edexcel

Mark Scheme (Results)
Summer 2015

Pearson Edexcel GCE in Mechanics 4 (6680/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's Iargest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code UA042157
All the material in this publication is copyright
© Pearson Education Ltd 2015

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:
'M' marks
These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation.
e.g. resolving in a particular direction, taking moments about a point, applying a suvat equation, applying the conservation of momentum principle etc.
The following criteria are usually applied to the equation.
To earn the M mark, the equation
(i) should have the correct number of terms
(ii) be dimensionally correct i.e. all the terms need to be dimensionally correct
e.g. in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel ' g ' s.
For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

M marks are sometimes dependent (DM) on previous M marks having been earned. e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity - this M mark is often dependent on the two previous M marks having been earned.
' A ' marks
These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. E.g. M0 A1 is impossible.

'B' marks

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph)
A few of the A and B marks may be f.t. - follow through - marks.

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- $\boldsymbol{*}$ The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Mechanics Marking

(But note that specific mark schemes may sometimes override these general principles)

- Rules for M marks: correct no. of terms; dimensionally correct; all terms that need resolving (i.e. multiplied by cos or \sin) are resolved.
- Omission or extra g in a resolution is an accuracy error not method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of $g=9.8$ should be given to 2 or 3 SF.
- Use of $g=9.81$ should be penalised once per (complete) question.
N.B. Over-accuracy or under-accuracy of correct answers should only be penalised once per complete question. However, premature approximation should be penalised every time it occurs.
- Marks must be entered in the same order as they appear on the mark scheme.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads - if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft
- Mechanics Abbreviations

M(A) Taking moments about A.
N2L Newton's Second Law (Equation of Motion)
NEL Newton's Experimental Law (Newton's Law of Impact)
HL Hooke's Law
SHM Simple harmonic motion
PCLM Principle of conservation of linear momentum
RHS, LHS Right hand side, left hand side.

J une 2015
 6680 Mechanics 4
 Mark Scheme

Question Number	Scheme	Marks	Notes
1	$\mathbf{r}_{P}-\mathbf{r}_{Q}$	M1	Find position vector of one particle relative to the other . $\mathbf{r}_{P}=\binom{16+t}{-12+2 t}, \mathbf{r}_{Q}=\binom{-5+2 t}{4+t}$
	$=\binom{21-t}{-16+t}$	A1	Accept +/-
	$d^{2}=(21-t)^{2}+(-16+t)^{2}$	M1	Pythagoras
	$\frac{\mathrm{d}}{\mathrm{d} t} d^{2}=-2(21-t)+2(-16+t)(=-74+4 t)$	M1	Differentiate d or d^{2} wrt t
			Set derivative $=0$ and solve for t
	Min when $t=18.5(\mathrm{~s})$	A1	
	Relative position $\binom{2.5}{2.5}$, distance $\sqrt{2.5^{2}+2.5^{2}}(\mathrm{~m})$	M1	Substitute their t to find d
	$=\sqrt{\frac{25}{2}}=3.54(\mathrm{~m})$	A1	
		[7]	
	See over for alternatives.		

Question Number	Scheme	Marks	Notes
alt1	$\mathbf{r}_{P}-\mathbf{r}_{Q}$	M1	Position of P relative to Q
	$=\binom{21-t}{-16+t}$	A1	Accept +/-
	$d^{2}=(21-t)^{2}+(-16+t)^{2}\left(=2 t^{2}-74 t+697\right)$	M1	Use Pythagoras to express d^{2} as a quadratic in t
		M1	Complete the square
	$2(t-18.5)^{2}(-684.5+697)$	A1	Correct as far as $2(t-18.5)^{2}+\ldots . .$.
	Min $d^{2}=697-684.5$	M1	Use completed square to find minimum value for their expression
	Min. $d=\sqrt{697-684.5}=\sqrt{12.5}$	A1	
alt2	$\mathbf{r}_{P}-\mathbf{r}_{Q}$	M1	Position of P relative to Q
	$=\binom{21-t}{-16+t}$	A1	Accept +/-
	Relative velocity $\binom{-1}{1}$	M1	
	$:\binom{21-t}{-16+t} \cdot\binom{-1}{1}=-(21-t)+(-16+t)=0$,	M1	Set scalar product of relative position and relative velocity $=0$ and solve for t.
	$t=18.5$ (s)	A1	
	Relative position $\binom{2.5}{2.5}$, distance $\sqrt{2.5^{2}+2.5^{2}}(\mathrm{~m})$	M1	Substitute their t to find d
	$=\sqrt{\frac{25}{2}}=3.54(\mathrm{~m})$	A1	
	See over for alternative		

Question Number	Scheme	Marks	Notes
alt 3	$\mathbf{r}_{P}-\mathbf{r}_{Q}$	M1	Initial position of P relative to Q
	$=\binom{21}{-16}$	A1	Accept +/-
	Relative velocity $\binom{-1}{1}$	M1	
		M1	Use scalar product to find $\cos \theta$
	$\cos \theta=\frac{-37}{\sqrt{2} \sqrt{697}}(-0.998 \ldots .)$	A1	Accept +/-
	$d=P Q \sin \theta$	M1	Use trig to find distance
	$=\sqrt{697} \times \sqrt{1-\frac{37^{2}}{2 \times 697}}=\frac{5}{\sqrt{2}} \approx 3.54$	A1	
		[7]	

Question Number		Marks	
$\mathbf{2}$		Scheme	Notes

| Question
 Number | | Marks | Notes |
| :--- | :--- | :--- | :--- | :--- |

Question Number	Scheme	Marks	Notes
3 alt	For those who prefer everything with trig:		
	$v_{A} \sin \alpha=3 u \sin \theta, \quad v_{B} \sin \beta=u \sin \theta$	B1	Perpendicular to the l.o.c.
	$m .3 u \cos \theta-2 m . u \cos \theta=m v_{A} \cos \alpha+2 m v_{B} \cos \beta$	M1	CLM
	$\left(u \cos \theta=v_{A} \cos \alpha+2 v_{B} \cos \beta\right)$	A1	
	$\frac{1}{8} \times(3 u \cos \theta+u \cos \theta)=v_{B} \cos \beta-v_{A} \cos \alpha$	M1	Impact law
	$\left(\frac{u}{2} \cos \theta=v_{B} \cos \beta-v_{A} \cos \alpha\right)$	A 1	
	$\frac{u}{2} \cos \theta=v_{B} \cos \beta, \quad 0=v_{A} \cos \alpha(\Rightarrow \sin \alpha=1)$	DM1	Simultaneous equations
		A1	
	$v_{A} \sin \alpha=v_{A}=2 v_{B}=3 u \sin \theta$	M1	Use $v_{A}=2 v_{B}$ to find β
	$v_{B} \sin \beta=u \sin \theta \Rightarrow \frac{3 u \sin \theta}{2} \sin \beta=u \sin \theta$	A1	Equation without v_{A} and v_{B}
	$\sin \beta=\frac{2}{3}$	A1	
	$\begin{aligned} & 2 v_{B}=3 u \sin \theta \& \frac{u}{2} \cos \theta=v_{B} \cos \beta \\ & \Rightarrow 6 \tan \theta=\frac{2}{\cos \beta}\left(=2 \times \frac{3}{\sqrt{5}}\right) \end{aligned}$	M1	Solve for θ
	$\tan \theta=\frac{1}{\sqrt{5}}, \quad \theta=24.1\left(^{\circ}\right) \quad(0.421 \text { radians })$	A1	
		[12]	

Question Number	Scheme	Marks	Notes
4a	Equation of motion: $900 a=\frac{22500}{v}-25 v$	M1	Requires all three terms. Condone sign errors
		A1	Correct unsimplified equation
	$a=\frac{\frac{22500}{v}-25 v}{900}=\frac{900-v^{2}}{36 v}$	A1 [3]	Obtain **Given answer** with no errors seen
4b	$\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{900-v^{2}}{36 v}$	B1	Differential equation in v and t
	$\int \frac{36 v}{900-v^{2}} \mathrm{~d} v=\int 1 \mathrm{~d} t$,	M1	Separate \& integrate to obtain a solution involving a log. function
	$t=-18 \ln \left(900-v^{2}\right)(+C)$	A1	
	$T=-18 \ln 500+18 \ln 800=18 \ln \frac{8}{5}$	DM1	Use limits correctly Dependent on previous M1
		A1	Obtain ${ }^{* *}$ Given answer** with no errors seen
		[5]	
4c	$\frac{900-v^{2}}{36 v}=v \frac{\mathrm{~d} v}{\mathrm{~d} x}$	B1	Differential equation in v and x
	$\int \frac{v^{2}}{900-v^{2}} \mathrm{~d} v=\int \frac{1}{36} \mathrm{~d} x$	M1	Separate variables
	$=\int \frac{900}{900-v^{2}}-1 \mathrm{~d} v=\left(\int \frac{900}{60}\left(\frac{1}{30-v}+\frac{1}{30+v}\right)-1 \mathrm{~d} v\right)$	M1	Split to the form $\frac{A}{900-v^{2}}+B$ and integrate
	$15 \ln \left\|\frac{30+v}{30-v}\right\|-v=\frac{x}{36}(+C)$	A1	
	$15 \ln \left(\frac{50}{10} \times \frac{20}{40}\right)-(20-10)=\frac{x}{36}$	M1	Use limits and solve for x
	$x=135(\mathrm{~m}) \quad(540 \ln 2.5-360)$	A1	Accept exact answer of the form $a \ln b-c$
		[6]	
		(14)	

Question Number	Scheme	Marks	Notes
5 a			Extension in $A P: 2+x$, Extension in $B P: 3+\frac{1}{4} \sin 2 t-x-1$
	$T_{1}=\frac{12(2+x)}{1}$	B1	Force towards A
	$T_{2}=12\left(2+\frac{1}{4} \sin 2 t-x\right)$	B1	Force towards B
	$1.5 \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}=T_{2}-T_{1}(=3 \sin 2 t-24 x)$	M1	Form equation of motion of P. Requires derivative and both tensions, but condone sign errors. Allow with a for \ddot{x}
		A1	Correct equation in x and t
	$\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+16 x=2 \sin 2 t$	A1	Obtain ***given answer*** with no errors seen.
		[5]	
5b	$t=0, x=0 \quad \Rightarrow C=0$	B1	
	$t=0, \dot{x}=0=(-4 C \sin 4 t)+4 D \cos 4 t+\frac{1}{3} \cos 2 t$	M1	SR: M1A1 is available if C is not found or C is
	$D=-\frac{1}{12}$	A1	incorrect.
	$\dot{x}=0 \Rightarrow \cos 4 t=\cos 2 t$	M1	At rest: set their $\dot{x}=0$
	$2 \cos ^{2} 2 t-1=\cos 2 t$		
	$\cos 2 t=1,-\frac{1}{2} \quad 2 t=\frac{2 \pi}{3}, \quad t=\frac{\pi}{3} \quad(1.05)$	A1	$\text { Not } \frac{1}{2} \cos ^{-1}\left(\frac{-1}{2}\right) ?$
		[5]	

Question Number	Scheme	Marks	Notes
6 a			
	GPE of the ring: $-2 m g r \cos 2 \theta$	B1	Allow with +2 kmgr
	GPE of suspended particles: $-\sqrt{6} m g\left(L_{1}-a\right)-\sqrt{6} m g\left(L_{2}-b\right)$	M1	Expression of the correct structure involving their L_{1}, L_{2}, a and b
	$a=2 r \sin (45-\theta)=\frac{2 r}{\sqrt{2}}(\cos \theta-\sin \theta)$	A1	Correct expression for $B R$ in terms of r and θ Any equivalent e.g. $r \sqrt{2(1-\sin 2 \theta)}$
	$b=2 r \cos (45-\theta)=\frac{2 r}{\sqrt{2}}(\cos \theta+\sin \theta)$	A1	Correct expression for $A R$ in terms of r and θ Any equivalent e.g. $r \sqrt{2(1+\sin 2 \theta)}$
	GPE of system: $-\sqrt{6} m g\left(L_{1}-a\right)-\sqrt{6} m g\left(L_{2}-b\right)-2 m g r \cos 2 \theta$	DM1	Add the three components. Dependent on the previous M
	$=2 \times \frac{2 r}{\sqrt{2}} \cos \theta \times \sqrt{6} m g-2 m g r \cos 2 \theta+\text { constant }$		
	$=2 m g r(2 \sqrt{3} \cos \theta-\cos 2 \theta)+$ constant	A1	Simplify to the given answer
		[6]	

Question Number	Scheme	Marks	Notes
6b	$\frac{\mathrm{d} V}{\mathrm{~d} \theta}=-4 \sqrt{3} m g r \sin \theta+4 m g r \sin 2 \theta$	M1	Differentiate
	In equilibrium: $\frac{\mathrm{d} V}{\mathrm{~d} \theta}=0=4 m g r \sin \theta(-\sqrt{3}+2 \cos \theta)$	M1	Set $\frac{\mathrm{d} V}{\mathrm{~d} \theta}=0$ and solve for θ
	$\theta= \pm \cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)= \pm \frac{\pi}{6}(= \pm 0.52)$	A1	
	or $\theta=0$	B1	
		[4]	
6c	$\frac{\mathrm{d}^{2} V}{\mathrm{~d} \theta^{2}}=-4 \sqrt{3} m g r \cos \theta+8 m g r\left(\cos ^{2} \theta-\sin ^{2} \theta\right)$	M1	Second derivative - needs to be the full expression.
	$\frac{\mathrm{d}^{2} V}{\mathrm{~d} \theta^{2}}=m g r\left(-4 \sqrt{3} \times \frac{\sqrt{3}}{2}+8\left(\frac{3}{4}-\frac{1}{4}\right)\right)=-2 m g r<0$	DM1	Substitute $\theta=\frac{\pi}{6}$ Dependent on the previous M1
	So equilibrium is unstable	A1	No errors seen
		[3]	
		(13)	
	Accept equivalent methods for determining max/min.		

Question Number	Scheme	Marks	Notes
7a	Resolve parallel to barrier - condone sin/cos confusion	M1	w / C
	$u \cos 60=v \cos \theta$	A1	19
	Resolve perpendicular to the barrier - condone consistent $\sin /$ cos confusion. Use e correctly	M1	
	$e u \sin 60=v \sin \theta$	A1	A° B
	$v^{2}=u^{2} \cos ^{2} 60+e^{2} u^{2} \sin ^{2} 60=\frac{u^{2}}{4}+\frac{3 u^{2}}{16}=\frac{7 u^{2}}{16}$	M1	Eliminate θ and solve for v.
	$v=\frac{\sqrt{7}}{4} u$	A1	Obtain given answer correctly with no errors seen
		[6]	
7b	Angle of approach with $B C=19.1^{\circ}$	B1	
	$v \cos 19.1=w \cos \phi$	M1	Components parallel to $B C$ condone sin/cos confusion
	$\frac{1}{2} v \sin 19.1=w \sin \phi$	M1	Components perpendicular to $B C$ condone consistent sin/cos confusion Use e correctly
		A1	Equations correct for their 19.1
	Form equation in v and ϕ	M1	Square and add or divide to find $\tan \phi$
	$w^{2}=v^{2}\left(\frac{1}{4} \sin ^{2} 19.1+\cos ^{2} 19.1\right)$	A1	$\left(\phi=9.83^{\circ}\right)$
	$0.634 u$	A1	

Question Number	Scheme	Marks	Notes
7 balt	$\tan \theta=\frac{1}{2} \tan 60$	B1	
	$\tan \alpha=\frac{1}{2} \tan (60-\theta)\left(=\frac{1}{2}\left(\frac{\sqrt{3}-\frac{1}{2} \sqrt{3}}{1+\sqrt{3} \cdot \frac{1}{2} \sqrt{3}}\right)=\frac{\sqrt{3}}{10}\right)$	M1	
	$v \cos (60-\theta)=w \cos \alpha$	A1	
	$v\left(\frac{1}{2} \cdot \frac{2}{\sqrt{7}}+\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{\sqrt{7}}\right)=w \frac{10}{\sqrt{103}}\left(=v \frac{5}{2 \sqrt{7}}\right)$	M1	
	$w=\frac{\sqrt{103}}{4 \sqrt{7}} v=\frac{\sqrt{103}}{4 \sqrt{7}} \cdot \frac{\sqrt{7}}{4} u=\frac{\sqrt{103}}{16} u \quad(0.634 u)$	M1	
		A1	
		$[7]$	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

